Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2117, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459063

RESUMO

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.


Assuntos
Anaplasma phagocytophilum , Artrópodes , Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Hemócitos , Ixodes/microbiologia , Borrelia burgdorferi/fisiologia
2.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37693411

RESUMO

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here, we describe immune cells or hemocytes from the clinically relevant tick Ixodes scapularis using bulk and single cell RNA sequencing combined with depletion via clodronate liposomes, RNA interference, Clustered Regularly Interspaced Short Palindromic Repeats activation (CRISPRa) and RNA-fluorescence in situ hybridization (FISH). We observe molecular alterations in hemocytes upon tick infestation of mammals and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We predict distinct hemocyte lineages and reveal clusters exhibiting defined signatures for immunity, metabolism, and proliferation during hematophagy. Furthermore, we perform a mechanistic characterization of two I. scapularis hemocyte markers: hemocytin and astakine. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, which impacts blood feeding and molting behavior of ticks. Hemocytin specifically affects the c-Jun N-terminal kinase (JNK) signaling pathway, whereas astakine alters hemocyte proliferation in I. scapularis. Altogether, we uncover the heterogeneity and pleiotropic roles of hemocytes in ticks and provide a valuable resource for comparative biology in arthropods.

3.
Proc Natl Acad Sci U S A ; 120(20): e2208673120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155900

RESUMO

The immune deficiency (IMD) pathway directs host defense in arthropods upon bacterial infection. In Pancrustacea, peptidoglycan recognition proteins sense microbial moieties and initiate nuclear factor-κB-driven immune responses. Proteins that elicit the IMD pathway in non-insect arthropods remain elusive. Here, we show that an Ixodes scapularis homolog of croquemort (Crq), a CD36-like protein, promotes activation of the tick IMD pathway. Crq exhibits plasma membrane localization and binds the lipid agonist 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. Crq regulates the IMD and jun N-terminal kinase signaling cascades and limits the acquisition of the Lyme disease spirochete B. burgdorferi. Additionally, nymphs silenced for crq display impaired feeding and delayed molting to adulthood due to a deficiency in ecdysteroid synthesis. Collectively, we establish a distinct mechanism for arthropod immunity outside of insects and crustaceans.


Assuntos
Artrópodes , Infecções Bacterianas , Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ixodes/microbiologia , Borrelia burgdorferi/genética , NF-kappa B , Doença de Lyme/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...